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Abstract

Background: Poor diet, alcohol use, and tobacco smoking have been identified as strong determinants of chronic diseases, such
as cardiovascular disease, diabetes, and cancer. Smartphones have the potential to provide a real-time, pervasive, unobtrusive,
and cost-effective way to measure these health behaviors and deliver instant feedback to users. Despite this, the validity of using
smartphones to measure these behaviors is largely unknown.

Objective: The aim of our review is to identify existing smartphone-based approaches to measure these health behaviors and
critically appraise the quality of their measurement properties.

Methods: We conducted a systematic search of the Ovid MEDLINE, Embase (Elsevier), Cochrane Library (Wiley), PsycINFO
(EBSCOhost), CINAHL (EBSCOHost), Web of Science (Clarivate), SPORTDiscus (EBSCOhost), and IEEE Xplore Digital
Library databases in March 2020. Articles that were written in English; reported measuring diet, alcohol use, or tobacco use via
a smartphone; and reported on at least one measurement property (eg, validity, reliability, and responsiveness) were eligible. The
methodological quality of the included studies was assessed using the Consensus-Based Standards for the Selection of Health
Measurement Instruments Risk of Bias checklist. Outcomes were summarized in a narrative synthesis. This systematic review
was registered with PROSPERO, identifier CRD42019122242.

Results: Of 12,261 records, 72 studies describing the measurement properties of smartphone-based approaches to measure diet
(48/72, 67%), alcohol use (16/72, 22%), and tobacco use (8/72, 11%) were identified and included in this review. Across the
health behaviors, 18 different measurement techniques were used in smartphones. The measurement properties most commonly
examined were construct validity, measurement error, and criterion validity. The results varied by behavior and measurement
approach, and the methodological quality of the studies varied widely. Most studies investigating the measurement of diet and
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alcohol received very good or adequate methodological quality ratings, that is, 73% (35/48) and 69% (11/16), respectively,
whereas only 13% (1/8) investigating the measurement of tobacco use received a very good or adequate rating.

Conclusions: This review is the first to provide evidence regarding the different types of smartphone-based approaches currently
used to measure key behavioral risk factors for chronic diseases (diet, alcohol use, and tobacco use) and the quality of their
measurement properties. A total of 19 measurement techniques were identified, most of which assessed dietary behaviors (48/72,
67%). Some evidence exists to support the reliability and validity of using smartphones to assess these behaviors; however, the
results varied by behavior and measurement approach. The methodological quality of the included studies also varied. Overall,
more high-quality studies validating smartphone-based approaches against criterion measures are needed. Further research
investigating the use of smartphones to assess alcohol and tobacco use and objective measurement approaches is also needed.

International Registered Report Identifier (IRRID): RR2-10.1186/s13643-020-01375-w

(JMIR Mhealth Uhealth 2022;10(2):e27337) doi: 10.2196/27337
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Introduction

Background
Traditional measurement techniques to assess health behaviors
can be difficult and burdensome for individuals, clinicians, and
researchers alike and are often subject to problems such as recall
bias and forgotten information [1]. Novel measurement
techniques are needed to increase compliance and accuracy with
recording data, reduce respondent burden, and increase the
quality and detail of health behavior information. Smartphones
may present an opportunity to do just this.

Smartphones have become an integral part of the lives of many
people [2], and users often use their smartphones and
smartphone apps to record and measure a range of health
behaviors [3]. In addition, the standard features of smartphones
(ie, sensors, such as accelerometers, gyroscopes, and light
sensors) allow these devices to continuously monitor contexts
of users (eg, activity, location, and environment). Data from
these sensors can be collected passively, without the active
involvement of the user, and generate information about some
behaviors with little burden [4]. Unfortunately, the ability to
accurately measure key health behaviors using smartphones is
currently hampered by a lack of understanding of the validity
and reliability of the approaches used.

Consumption behaviors, such as dietary intake, alcohol use,
and tobacco smoking, are typically measured using approaches
prone to bias. For instance, diet is often assessed using food
diaries that require participants to record everything they eat
and drink for a period. This approach requires participants to
be literate and highly motivated, and research has shown that
the quality of food records declines considerably over time [5].
Retrospective recall methods are also commonly used for these
behaviors. These methods often require multiple administrations
to accurately capture variations in behavior over time [5,6], rely
heavily on the memory of participants and interviewer training,
and may be affected by social desirability bias, particularly for
smoking and alcohol use. In addition, the accuracy of these
self-report approaches is dependent on the ability of participants
to accurately estimate portion sizes (or standard drinks) and, as
such, often suffer from underreporting of behaviors [5,7,8].

Furthermore, traditional methods to objectively measure
consumption behaviors are often burdensome and costly to
administer. Weighed food records, for example, where food to
be consumed and any waste left over are weighed and recorded,
have been shown to be a valid method of recording dietary
intake. However, outside of a laboratory setting, this approach
is extremely burdensome and impractical [5]. In addition,
although the gold standard doubly labeled water method (where
isotopes in water provided to participants are used for tracing
purposes) can accurately estimate the energy intake of
participants, the approach requires multiple urine, saliva, or
blood samples to be taken; is costly; requires sophisticated
equipment; and is valid only among weight-stable participants.
Therefore, it is only feasible within specialized research
laboratories and not for use in clinical settings or by consumers
themselves [5]. Although devices to objectively measure alcohol
and tobacco use via expired breath ethanol and expired carbon
monoxide (CO) are readily available for purchase, they must
be regularly and properly calibrated to produce accurate results.
Furthermore, as these behaviors often occur outside of the home
and in social situations, their use may not be practical or
acceptable in free-living conditions.

Given the ubiquitous and portable nature of smartphones, their
powerful computing abilities, built-in cameras and sensors, and
the social acceptance of their use in almost all situations,
accurate smartphone measurement could offer solutions to many
of the issues associated with traditional approaches to measure
diet, alcohol, and tobacco use. Although several reviews of both
published literature and mobile apps available in the marketplace
have examined the efficacy of apps to help improve diet, alcohol
use, and tobacco use, only 1 review to date has specifically
focused on the measurement properties of smartphone-based
approaches to measure any of these behaviors [9]. As such,
there is a limited understanding of how these 3 behaviors might
be validly and reliably measured using smartphones [10-13].

Objectives
This study aims to systematically review the existing literature
on the measurement properties of smartphone-based approaches
to assess diet, alcohol use, and tobacco use. The specific
objectives of this review are as follows:
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1. To identify and describe the ways in which diet, alcohol
use, and tobacco use have been measured using smartphones

2. To describe and critically evaluate the available evidence
on the measurement properties of these approaches

3. To provide recommendations on the most suitable and
effective ways of measuring diet, alcohol use, and tobacco
use with smartphones

Methods

Overview
This review was conducted in accordance with the published
review protocol [14] and the PRISMA (Preferred Reporting
Items for Systematic Review and Meta-Analyses) guidelines
[15]. It is part of a larger systematic review that examines the
measurement properties of smartphone approaches to assess 6
key health behaviors (physical activity, sedentary behavior,
sleep, diet, alcohol use, and tobacco use). Owing to the large
number of eligible studies identified in this larger review, only
those studies that examined consumption behaviors (ie, diet,
alcohol use, and tobacco use) were included in the current
review to allow for adequate description and discussion of the
approaches identified and their associated measurement
properties.

Search Strategy and Selection Criteria
A research librarian (ABW) searched Ovid MEDLINE, Embase
(Elsevier), Cochrane Library (Wiley), PsycINFO (EBSCOhost),
CINAHL (EBSCOHost), Web of Science (Clarivate),
SPORTDiscus (EBSCOhost), and IEEE Xplore Digital Library
for research describing the measurement properties of
smartphone-based approaches to assess at least one of the 6 key
health behaviors. All databases were searched on March 1, 2020.
A date limit was applied from 2007 to present, as 2007 is the
year in which the first smartphones (ie, mobile phones with
large capacitive touchscreens using direct finger input, as
opposed to a stylus or keypad) were released. An example search
strategy developed for MEDLINE is shown in Multimedia
Appendix 1. Published studies with any type of study design,
involving participants of all ages, were eligible for inclusion.
Included articles were required to be in English language,
peer-reviewed studies of human participants, describe a
smartphone-based approach to assess diet, alcohol use, and
tobacco use and to report on at least one measurement property
of this approach identified in the Consensus-Based Standards
for the Selection of Health Measurement Instruments (COSMIN)
Taxonomy of Measurement Properties (Table 1).

Table 1. Consensus-Based Standards for the Selection of Health Measurement Instruments taxonomy of measurement propertiesa.

Measurement propertiesDomain descriptionDomain

Degree to which the measurement is free from measurement
error

Reliability • Internal consistency
• Reliability
• Measurement error

Degree to which an outcome measure measures the construct
it purports to measure

Validity • Content validity (including face validity)
• Construct validity (including structural validity, hypotheses

testing, and cross-cultural validity)
• Criterion validity

Ability of an outcome measure to detect change over timeResponsiveness • Responsiveness

aSee Consensus-Based Standards for the Selection of Health Measurement Instruments definitions of domains, measurement properties, and aspects of
measurement properties [16] for full descriptions and definitions of measurement properties.

Studies were excluded if they described the feasibility of the
measurement approach only, described the measurement
properties of using text messaging only to measure behaviors,
or described the measurement properties of a wearable device
(eg, Fitbit [Fitbit Inc]) alone.

Data Extraction and Screening
All identified studies were exported into Endnote (version 8)
to remove duplicates. Records were then uploaded to the
Covidence Systematic Review software (Veritas Health
Innovation) for screening. Authors participating in the screening,
full-text review, and data extraction process participated in
training sessions where multiple reviewers independently
reviewed and discussed a selection of papers to ensure
consistency across reviewers. Titles and abstracts were first
screened by 1 reviewer (RV, JW, CS, LT, BO, LB, LG, OG,
BP, or JT). Records were excluded if it was clear from the title
and abstract that they did not examine the measurement

properties of a smartphone-based approach to measure diet,
tobacco, or alcohol. A total of 8 members of the research team
(OG, CS, JW, LT, BO, ZB, KC, and RV) then participated in
full-text screening of results, with the full text of potentially
relevant studies independently assessed for eligibility by 2
members of this group, and any disagreements were resolved
with the assistance of a third researcher. LT, BO, CS, or OG
extracted data using a standardized form. Further details of the
data extraction are included in the published protocol [14].

Data Analysis
The primary outcomes of interest were the measurement
properties of smartphone-based approaches to assess diet,
alcohol use, and tobacco use. Specifically, we investigated, as
reported, the internal consistency, reliability, measurement error,
content validity, construct validity (including convergent
validity), criterion validity, and responsiveness of the approaches
identified. As there is currently no agreed-upon gold standard
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method for self-reported measurement of diet, alcohol use, or
tobacco use, only studies in which the smartphone-based
approach was compared with an objective measure of the
behavior (eg, weighed food records and observed number of
drinks or cigarettes consumed) were classified as investigating
criterion validity. The smartphone-based approach was
compared with a self-report measure, even if it was described
as a gold standard method by the authors, the paper was
classified as an investigating construct, specifically convergent
validity.

A narrative synthesis of the included studies was undertaken
for diet, alcohol use, and tobacco use separately, grouped
according to the type of measurement approach used, which
included self-report approaches, where participants were asked
to actively enter self-report information about their behaviors;
active objective approaches, where participants were asked to
actively provide an objective measure of their behavior (eg,
taking a photo of their food); and passive objective approaches,
where data generated by smartphone sensors were collected
without the active involvement of the participant and used to
generate information about behaviors. The methodological
quality of the included studies was assessed using the COSMIN
Risk of Bias checklist [17]. The COSMIN Risk of Bias checklist
was designed to assess the methodological quality of studies
investigating the measurement properties of patient-reported
outcome measures. It specifies several standards for design
requirements and preferred statistical methods when assessing

different measurement properties. The methodological quality
of each study was evaluated by rating all standards for each
measurement property investigated on a 4-point Likert scale.
A standard can be rated as very good (there is evidence that the
standard is met or when a preferred method was optimally used),
adequate (it can be assumed that the standard is met or when
the preferred method was used, but it was not optimally applied)
doubtful (it is unclear whether the standard is met or unclear if
a preferred method was used), or inadequate (there is evidence
that the standard is not met or when the preferred method was
not used). The overall quality of a study is determined by taking
the lowest rating of any standard [17].

Results

Overview
Of 12,967 identified records, 1305 (10.06%) were independently
fully reviewed by 2 reviewers. Agreement between reviewers
was 83.22% (1086/1305). A total of 72 studies were ultimately
included in the current review. These 72 studies involved 4732
participants and were most commonly conducted in the United
States (27/72, 38%), European countries (9/72, 13%), the United
Kingdom (6/72, 8%), and Australia (13/72, 18%). As shown in
Figure 1, up to 67% (48/72) papers examined the measurement
of diet, 22% (16/72) examined alcohol use measurement, and
11% (8/72) examined measurement of tobacco use. The details
of the identified smartphone-based measurement approaches
are discussed below.
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Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flowchart.

Diet

Overview
Overall, 67% (48/72) of the papers examined the measurement
properties of a smartphone-based approach to assess diet (n
range 0-203; 63.77% of participants in included studies were
female; age range of participants 3-75 years). The key

characteristics of these studies are detailed in Table 2 (for full
study details, see Multimedia Appendix 2 [3,18-85]). Of the
studies, 58% (28/48) described self-report approaches, whereas
42% (20/48) investigated active objective approaches. No
studies have identified that used passive objective approaches
to measure diet. The most commonly assessed measurement
properties were construct validity, measurement error, and
criterion validity.
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Table 2. Key characteristics of studies examining the measurement of diet via a smartphone.

Measurement properties assessedMeasure-
ment ap-
proach

Publicly
available

App nameCountryStudy

Risk of
bias

Responsive-
ness

Criterion
validity

Construct
validity

Measure-
ment error

Reliability

Very good—✓—✓—aSelf-reportYesMyFitnessPalCanadaAhmed et
al [40]

Doubtful——✓✓—Self-reportNRNRbUnited
Kingdom

Ali et al
[27]

Very good——✓✓—Self-reportYesEasy diet diaryAustraliaAmbrosi-
ni et al
[26]

Very good——✓✓—Active ob-
jective

NRDietBytesAustraliaAshman
et al [57]

Very good——✓——Self-reportNRe-EPIDEMIOLO-
GY

SpainBéjar
[25]

Very good——✓——Self-reportNRe-12HRcSpainBéjar
[25]

Very good——✓——Self-reportNRe-12HRSpainBéjar et
al [39]

Very good——✓——Self-reportNRe-12HRSpainBéjar et
al [36]

Adequate—✓—✓—Active ob-
jective

N/AN/AdUnited
States

Boushey
et al [55]

Inadequate——✓——Self-reportNRdevilSPARCeUnited
States

Bruening
et al [42]

Very good—✓✓✓—Self-reportNRe-CAfSwitzer-
land

Bucher et
al [23]

Inadequate——✓✓—Self-reportNRMy Meal MateUnited
Kingdom

Carter et
al [24]

Adequate——✓✓—Self-reportYesMyFitnessPalAustraliaChen et
al [34]

Adequate——✓✓—Self-reportNRNRPolandChmurzyn-
ska et al
[37]

Adequate—✓✓✓—Active ob-
jective

N/AN/AUnited
Kingdom

Costello
et al [56]

Adequate—✓✓✓—Active ob-
jective

N/AN/ASwedenDelisle
Nyström
et al [54]

Adequate—✓—✓—Self-reportYesSamsung Health;
MyFitnessPal; Fat-

United
Kingdom

Fallaize
et al [32]

Secret; Noom
Coach; Lose it!

Very good——✓——Self-reportYesMyFitnessPal; Fit-
bit; Lose it!; My-
Plate; Lifesum

United
States

Griffiths
et al [22]

Very good—✓✓——Self-reportYesEZNutriPalUnited
States

Hezar-
jaribi et
al [33]

Inadequate——✓——Self-reportNoSpeech2HealthUnited
States

Hezar-
jaribi et
al [38]

Very good—✓———Active ob-
jective

NRNRAustraliaHuang et
al [53]
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Measurement properties assessedMeasure-
ment ap-
proach

Publicly
available

App nameCountryStudy

Risk of
bias

Responsive-
ness

Criterion
validity

Construct
validity

Measure-
ment error

Reliability

Doubtful——✓✓—Self-reportYesN/AAustraliaHutches-
son et al
[45]

Very good—✓—✓—Active ob-
jective

NRDialBeticsJapanKato et al
[62]

Doubtful—✓—✓—Active ob-
jective

N/AN/AChinaKong et
al [52]

Inadequate———✓—Self-reportYesResearch Food Di-
ary

AustraliaLancaster
et al [28]

Adequate——✓✓—Self-reportNoBridge2UUnited
States

Lemacks
et al [31]

Very good——✓——Active ob-
jective

NoNRTaiwanLiu et al
[49]

Adequate—✓—✓—Self-reportNRNRTaiwanLiu et al
[30]

Very good—✓——✓Active ob-
jective

NoNRUnited
States

Martin et
al [50]

Inadequate—✓—✓✓Active ob-
jective

NoNRUnited
States

Martin et
al [51]

Very good—✓———Self-reportYesSmartIntakeUnited
States

Most et al
[63]

Adequate—✓—✓—Active ob-
jective

N/ANRUnited
States

Nicklas et
al [48]

Adequate——✓✓—Self-reportNRFoodNowAustraliaPender-
gast et al
[21]

Very good—✓—✓—Active ob-
jective

N/AN/AGermanyPrinz et
al [60]

Adequate——✓✓—Self-reportNRe-DIAgAustraliaRangan et
al [20]

Adequate——✓✓—Self-reportNRe-DIAAustraliaRangan et
al [19]

Doubtful———✓—Active ob-
jective

NRGoCARBSwitzer-
land

Rhyner et
al [47]

Very good——✓——Self-reportYesMyNetDiaryUnited
States

Rodder et
al [35]

Very good——✓✓—Self-reportNRNutricam dietary
assessment method

AustraliaRollo et
al [59]

Very good—✓✓——Active ob-
jective

NRNutricam dietary
assessment method

AustraliaRollo et
al [61]

Inadequate——✓——Active ob-
jective

YesDiaTraceGermanySchiel et
al [64]

Inadequate——✓——Active ob-
jective

YesDiaTraceGermanySchiel et
al [65]

Adequate——✓✓—Self-reportNRSA-24RhChinaSmith et
al [44]

Very good—✓✓——Self-reportNoOhmageUnited
States

Swende-
man et al
[43]
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Measurement properties assessedMeasure-
ment ap-
proach

Publicly
available

App nameCountryStudy

Risk of
bias

Responsive-
ness

Criterion
validity

Construct
validity

Measure-
ment error

Reliability

Doubtful———✓—Self-reportNRMyFitnessPalBrazilTeixeira
et al [18]

Very good——✓✓—Self-reportNREat and Track appAustraliaWellard-
Cole et al
[29]

Very good—✓———Active ob-
jective

NoSnap-n-EatUnited
States

Zhang et
al [46]

Very good✓————Self-reportNRNRUnited
States

Zhu et al
[58]

aMeasurement property was either not assessed or not reported.
bNR: not reported.
ce-12HR: electronic 12-hour dietary recall.
dN/A: not applicable.
edevilSPARC: Social impact of Physical Activity and Nutrition in College.
fe-CA: electronic carnet alimentaire (“food record” in French).
ge-DIA: Electronic Dietary Intake Assessment.
hSA-24R: Smartphone Assisted 24 Hour Recall.

Self-report

Overview

Of the 28 studies that examined self-report methods for
recording diet, 24 (86%) investigated food diary apps, 2 (7%)
used ecological momentary assessment (EMA), 1 (4%)
examined a smartphone-assisted 24-hour dietary recall tool, and
1 (4%) investigated the use of a web-based food database via a
smartphone.

Food Diary Apps

A total of 24 studies investigated food diary apps [18-40,86]
designed to facilitate daily or real-time recording of dietary
intake. Usually, these are linked to a large database containing
preprogrammed information about the energy and nutrient
content of popular foods. These apps allow users to select food
and beverages they have consumed, and their energy and
nutrient intake for the day is automatically calculated. A wide
range of food diary apps were examined within the included
studies, 12 of which (described across 9 studies)
[18,21,22,26,32,34,35,40,87] were publicly available on the
leading app stores (Google Play or iOS).

A total of 3 studies [18,34,40] exclusively examined the
measurement properties of MyFitnessPal, a widely used
commercially available app, and 2 studies examined
MyFitnessPal along with another app [22,32]. Furthermore,
80% (4/5) of these studies found evidence to support the validity
of MyFitnessPal. Teixeira et al [18] compared the energy intake
generated by MyFitnessPal with estimates generated by a
paper-based food record. Griffiths et al [22] compared the app
with estimates generated by a dietary analysis program [87],
and Ahmed et al [40] and Fallaize et al [32] compared the app
with weighed food records. They found correlations between
the energy intake estimated by MyFitnessPal and their

comparison measure of 0.70-0.99. Falliaze et al [32], Griffiths
et al [22], and Ahmed et al [40] found no significant differences
among the estimation of energy and most nutrients; however,
where differences did exist, MyFitnessPal was found to yield
lower intakes. Chen et al [34], by contrast, found poor agreement
between MyFitnessPal and energy intake estimated via a 24-hour
recall measure, finding weak to moderate correlations
(0.21-0.42) and significantly lower values for total energy and
all macronutrients recorded via MyFitnessPal. They found no
proportional bias for energy or any of the nutrients assessed;
however, wide limits of agreement were observed.

Furthermore, 2 studies investigated top nutrition tracking apps,
including Fitbit, Lose it!, MyPlate, Lifesum, Samsung Health,
Fatsecret, Noom Coach, and MyFitnessPal [22,32]. Both studies
found strong correlations among energy and nutrient estimations
via the apps and their comparison measures (0.73-0.96 and
0.79-0.91, respectively). However, numerous significant
differences among nutrient estimations generated by the apps
and comparison measures were identified, particularly within
the Lose it! app. Other publicly available nutrition apps were
investigated in 2 studies, with moderate mean correlations
between apps and their comparison measures found (mean 0.61,
SD 0.11 [26] and mean 0.67, SD 0.14 [35]).

A total of 3 studies [21,33,38] investigated the use of
unstructured data entry methods to self-report food intake,
compared with structured forms of recording food intake
information. The unstructured data entry methods examined
information about food intake recorded via free-form speech
and text descriptions. Food intake information was then
extracted using manual coding or natural language processing
(NLP) software. Pendergast et al [21] investigated the FoodNow
app, which allowed diet information to be recorded via text
descriptions, voice messages, and optional images. This
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unstructured data were coded by trained nutritionists to match
each food or beverage item described in the app to an
appropriate item in a food and nutrient database [88]. They
compared this approach to energy expenditure measured via
the SenseWear Armband. Bland–Altman plots showed wide
limits of agreement, indicating error at the individual level but
no evidence of systematic bias among methods. The correlation
among methods was strong (0.75), and an acceptable level of
reliability among methods was found (intraclass correlation
coefficient 0.75, 95% CI 0.61-0.84). Hezarjaribi et al [33,38]
examined EZNutriPal and Speech2Health, 2 interactive diet
monitoring systems that facilitate the collection of speech
recordings and free-text data regarding dietary intake, real-time
prompting, and personalized nutrition monitoring. In contrast
to Pendergast et al [21] and the FoodNow app, the EZNutriPal
and Speech2Health apps feature an NLP unit that allows
automatic identification of food items described in the
unstructured data provided. In the Speech2Health system,
Hezarjaribi et al [38] used standard NLP techniques in
combination with a bespoke pattern mapping technique to
extract food names and portion sizes from spoken text. These
data were then used to estimate the nutrient information. In
EZNutriPal, Hezarjaribi et al [33] used an NLP framework based
on named-entity recognition, where unrecognized entities were
added to a training set to continuously update the ability of the
NLP framework to correctly identify food items from an
individual’s speech. Individual recognized entities relating to
food items, units, and quantities were then further processed to
obtain an estimate of nutrient information. This methodology
was tested using 13 participants across a 13-day period using
EZNutriPal. The authors found that compared with labeling of
the unstructured data by patients, EZNutriPal achieved an
accuracy of 89.7% in calorie intake estimation [33], whereas
Speech2Health achieved an accuracy of 92.2%. In their 2019
study, Hezarjabi et al [33,38] also compared the performance
of these 2 apps and found that the Speech2Health app identified
3.4 times more than the actual number of food items contained
in test sentences, whereas EZNutriPal identified 0.8 times less
than the actual number of food items contained in test sentences.
An interesting aspect of the 2019 study of Hezarjabi et al [33]
was that it explicitly incorporated personalization of the food
recognition system (from voice) by allowing users to provide
labels for unrecognized voice inputs. These inputs were then
used to further train the algorithm and thus improve the future
performance of the app.

EMA Apps

EMA aims to maximize the ecological validity of data collected
by repeatedly collecting information about the current behaviors
of participants in real-time in their natural environment [41].
Overall, 2 studies investigated apps using EMA where
participants were prompted multiple times throughout the day
to record their food intake [42,43]. Bruening et al [42] compared
smartphone-based EMAs with 24-hour dietary recalls, whereas
Swendeman et al [43] examined the agreement among EMAs
of self-reported diet quality and brief dietary recall measures,
anthropometric measurements, and bloodspot biomarkers.
Bruening et al [42] found good agreement between their
methods, with 87% of food reported in both systems. Similarly,

Swendeman et al [43] found that self-reported diet quality
assessed via EMAs was moderately correlated with dietary
recall measures for foods with high sugar content and fast food
but weakly correlated with fruits and vegetables, anthropometric,
and biomarker measures.

24-Hour Dietary Recall

One study investigated the performance of a smartphone-assisted
24-hour dietary recall tool in measuring beverage intake among
young Chinese adults [44], comparing it with a paper-based
tool and 24-hour urine samples. Participants reported
significantly reduced beverage intake via the
smartphone-assisted 24-hour recall compared with that via the
paper-based recall and fluid intake as assessed by the
smartphone, and urine volume was moderately correlated (0.58).
In addition, they found evidence of systematic measurement
errors whereby the bias for smartphone and paper-based recall
methods were not consistent across levels of intake, with the
bias increasing with higher intake of beverages.

Web-Based Food Database

One study [45] evaluated the accuracy of 7-day food record
methods accessed on the web via a smartphone, via a computer,
and using pen and paper. They found no significant differences
among total energy expenditure and energy intake reported for
the 3 different methods; however, their examination of the
measurement error of these approaches suggested that there
may be greater underreporting of energy intake using
paper-based diaries compared with computer- and
smartphone-based methods.

Active Objective

Overview

A total of 20 studies [46-65] examined apps that actively and
objectively measured dietary intake. All studies used images of
food to be consumed (and often also food waste) captured by
the camera of a smartphone. Overall, 75% (15/20) of studies
[48,50-52,54-57,59-65] investigated manually analyzed food
photography methods where participants took photos of their
food, which were then sent to researchers for analysis.
Furthermore, 25% (5/20) of studies [46,47,49,53,58] used
automatically analyzed food photography methods where images
of food were captured by participants using specialized apps,
which then analyzed images and calculated the energy and
nutrient content of foods pictured automatically.

Manually Analyzed Food Photography

A total of 15 studies [48,50-52,54-57,59-65] used this method,
of which 87% (13/15) demonstrated some evidence of its
reliability and validity. Rollo et al [59,61], for example,
conducted 2 studies to examine the performance of their
Nutricam Dietary Assessment Method (NuDAM). NuDAM is
an app that allows users to capture a photograph of food items
before consumption and store a voice recording to explain the
image contents before it is sent to a website for analysis by a
dietitian. In their 2011 study [59], energy intake measured by
the app was compared with a written food diary. Individual
differences in energy intake between the 2 records varied from
6.7% to 29.7%, and on average, energy intake was
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underrecorded using the app. In their 2015 study [61], energy
intake assessed via NuDAM was compared with weighed food
records and energy expenditure using the doubly labeled water
method. Moderate to strong correlations between NuDAM and
weighed food records were found for energy and nutrient intakes
(0.57-0.85), and mean nutrient intakes were not significantly
different. The overall mean energy intake calculated by the app
and weighed food records were both significantly lower than
the total energy expenditure calculated using the doubly labeled
water method. Participants who were found to underreport using
the app were also underreported via weighed food records.

Another 6 studies [50-52,56,60,62] compared manually analyzed
food photography to weighed food records and found strong
correlations among methods for energy (0.92-0.99) [56,60],
carbohydrates (0.93-0.99), fat (0.84-0.99), and protein
(0.94-0.99) estimates [52,60]. A total of 2 studies by Martin et
al [50,51] also examined the reliability of food photography
methods over time and found that the energy intake estimated
using this method was reliable over 3 [50] and 6 days of testing
[51]. Although there was good agreement among the methods
for daily energy and macronutrient intakes in Kong et al [52]
and Kato et al [62], in the study by Kong et al [52], as intake
increased, underestimation by the app was identified, whereas
Kato et al [62] found that images captured via the app generated
higher values than the weighed food record for some
macronutrients. Costello et al [56] also found evidence of a
small standardized bias.

In addition, 2 studies [57,63] conducted among pregnant women
generated limited evidence for the validity of food photography
among this population. For example, Ashman et al [57] found
moderate to strong correlations among food photography and
24-hour recall for energy and macronutrients (0.58-0.84) among
this population. Three studies among children and adolescents
found no significant differences among energy intake estimated
via food images and self-reported energy intake [64,65] or
energy intake estimated via the doubly labeled water method
[54]. However, in their study of 3- to 5-year-old children, Niklas
et al [48] found the remote food photography method to
significantly underestimate the mean daily energy intake when
using the doubly labeled water method.

Similarly, Boushey et al [55] found only moderate correlations
(0.58) among dietary intake estimates using the doubly labeled
water method and manually analyzed food photography. There
was no evidence of a systematic bias. Energy intake calculated
via their app was found to be significantly less than the estimates
calculated via the doubly labeled water method, with differences
more pronounced in men than in women.

Automatically Analyzed Food Photography

A total of 5 studies [46,47,49,53,58] used this method, all of
which provided some evidence of its reliability or validity. In
the study by Zhu et al [58], for example, images of meals
captured using a smartphone camera were segmented and
identified, and their volume was estimated. Before and after
images were used to estimate food intake and determine energy

and nutrients consumed. The app accurately identified between
84% and 96% of 19 different food items. The study also
explored the estimation of volume using 7 food items and the
estimation of weight using 2 food items. The mean percentage
error of the volume estimates was 5.65%. To estimate the mass,
the system had a percentage error between 3% and 56%.

Liu et al [49] examined two new methods to assist with the
automatic analysis of food photography—an interactive photo
interface (IPI) and a sketching-based interface (SBI). The IPI
presented users with images of predetermined portion sizes of
a specific food and allowed users to scan and select the most
representative image matching the food that they were
measuring. The SBI required users to relate the food shape to
a readily available comparator (eg, credit card) and scribble to
shade in the appropriate area. These were compared with
traditional life-sized photos commonly used by dietitians to
help people identify portion sizes. The overall accuracies of the
IPI, SBI, and traditional life size photo method were 66.98%,
46.05%, and 72.06%, respectively, showing that the SBI method
was significantly less accurate than the IPI and traditional life
size photo methods. In another study [47] investigating the
GoCARB app, participants were required to place a reference
card next to their plate and take 2 images using a smartphone.
A series of computer vision modules detected the plate and
automatically segmented and recognized different food items
into 9 broad food classes (pasta, potatoes, meat, breaded items,
rice, green salad or vegetables, mashed potatoes, carrots, and
beans) while their 3D shape was reconstructed. The carbohydrate
content of foods was then calculated by combining the volume
of each food item with the nutritional information provided by
a nutrition database. GoCARB estimates were compared with
participant estimates of carbohydrate content and the ground
truth (measured by weighing the meals and calculating
carbohydrates using the same nutrition database). The mean
relative error in carbohydrate estimation was 54.8% (SD 72.3%)
for the estimations of participants and 26.2% (SD 18.7%) for
the GoCARB app.

Alcohol

Overview
A total of 16 papers examined the measurement properties of
a smartphone-based approach to assess alcohol use (Multimedia
Appendix 2; Table 3 for full study details). A total of 1453
participants were included in these 16 studies (range 0-671; age
range 16-74 years; 510/1453, 35.09% female). Moreover, 62%
(10/16) of these studies described self-report approaches, 2%
(2/16) described active objective approaches, and 25% (4/16)
described passive objective approaches to measuring alcohol
use. The most commonly assessed measurement properties were
criterion and construct validity. Although numerous apps
measuring alcohol use are described here, only 1 app
(Intellidrink [66]) is currently accessible via the leading app
stores for consumers to monitor their own alcohol use (3 other
apps [67,68,89], although publicly available, are only available
for use by researchers for data collection).
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Table 3. Key characteristics of studies examining the measurement of alcohol via a smartphone.

Measurement properties assessedMeasure-
ment ap-
proach

Publicly
available

App nameCountryStudy

Risk of
bias

Respon-
siveness

Criterion
validity

Construct
validity

Content
validity

Measure-
ment error

Reliabili-
ty

Very good✓✓————bPassive ob-
jective

NRaAlcoGaitUnited
States

Arnold et
al [3]

Very good✓—✓———Passive ob-
jective

YesAWAREUnited
States

Bae et al
[67]

Doubtful——✓———Self-reportNoSIDEALSpainBarrio et
al [74]

Very good——✓———Self-reportNRHANDUnited
States

Bernhardt
et al [90]

Adequate——✓—✓—Self-reportNRLBMI-AcUnited
States

Dulin et
al [72]

Inadequate————✓✓Active ob-
jective

NRSPAQdUnited
States

Kim et al
[76]

Very good——✓———Self-reportNoPHITe for
duty

United
States

Kizake-
vich et al
[73]

Very good——✓———Self-reportYesIntellidrinkUnited
States

Luczak et
al [66]

Very good✓————✓Active ob-
jective

NRSpiralJapanMatsumu-
raet al
[77]

Doubtful✓—✓———Passive ob-
jective

N/AfAlcoGait
and Al-
coWear
Smart-
watch app

United
States

McAfee
et al [78]

Very good——✓———Self-reportNRNRUnited
Kingdom

Monk et
al [71]

Very good——✓✓——Self-reportN/ANRUnited
States

Paolillo
et al [70]

Adequate——✓———Self-reportYesCNLab-AAustraliaPoulton
et al [89]

Doubtful✓—✓———Passive ob-
jective

NoSensor log-
ger and
Drink log-
ger

Switzer-
land

Santani et
al [79]

Doubtful——✓—✓—Self-reportYesOhmageUnited
States

Swende-
man et al
[68]

Adequate——✓———Self-reportNoMetricwireUnited
States

Wray et
al [69]

aNR: not reported.
bNo reporting of measurement property assessed.
cLBMIA: Location-Based Monitoring and Intervention for Alcohol Use Disorders.
dSPAQ: Smartphone Addiction Questionnaire.
ePHIT: Personal Health Intervention Toolkit.
fN/A: not applicable.
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Self-report

Overview

Overall, 62.5% studies [66,68-74,89,90] examined the
measurement properties of apps that asked users to self-report
alcohol use. Most studies (7/10, 70%) asked participants to
report alcoholic beverage consumption daily [68,72,90] or in
real-time (ie, using EMA) [70,71,74,89] using an app.
Furthermore, 2 studies [69,73] examined the validity and
reliability of completing standardized measures of alcohol use
disorder via a smartphone, and 1 study [66] examined the ability
of self-reported alcohol consumption via a commercially
available app to accurately estimate breath alcohol
concentrations (BrACs).

Daily Self-report

Recording alcohol consumption once a day via a smartphone
app was investigated in 3 studies [68,72,90]. These studies
demonstrated that this approach possesses good convergent
validity when compared with traditional recall methods such
as the Timeline Follow Back (TLFB) [91], which is a
calendar-prompted, retrospective measure of alcohol
consumption. Swendeman et al [68] found a moderate
correlation (0.65) between daily self-reports and web-based
14-day recall surveys of alcohol use. However, this study also
found significant differences in the mean percentage of days of
alcohol use, with higher reports via daily app-based self-reports
compared with 14-day recall. Similarly, Dulin et al [72] found
moderate to strong correlations between data recorded through
an app they tested and the TLFB for percentage of days abstinent
(0.76-0.92), percentage of heavy drinking days (0.49-0.74), and
the number of drinks consumed per drinking day (0.49-0.74).
However, these correlations were found to diminish as more
time elapsed between consumption and recall.

EMA Apps

A total of 4 studies [70,71,74,89] examined the measurement
properties of self-reported alcohol use recorded via a smartphone
using EMA, that is, as it occurred in real time or close to real
time. Each of these studies employed smartphone apps that
asked participants if they had consumed alcohol since the last
prompt or last submission of data and the quantity consumed.
Participants were often instructed to record their alcohol use as
it occurred; however, Paolillo et al [70], Poulton et al [89], and
Monk et al [71] also proactively prompted participants to report
their alcohol use multiple times each day. These studies each
demonstrated real-time, self-reports of alcohol use via a
smartphone to have some convergence with retrospective reports
of alcohol use, particularly the TLFB (correlations of 0.42-0.95).
However, Monk et al [71] also found that participants reported
consuming more drinks when reporting in real time compared
with retrospective reporting. In addition, Monk et al [71] found
that more drinks consumed were related to higher discrepancies
between real-time and retrospective reports. Poulton et al [89]
also found that participants reported a significantly faster rate
of consumption when recording in real time via an app,
compared with retrospective accounts.

Standardized Measures of Alcohol Use Disorders

A total of 2 studies [69,73] examined the measurement
properties of administering the Alcohol Use Disorders
Identification Test (AUDIT), a standard measure of alcohol use
with established reliability and validity, via a smartphone [75].
In their study, Kizakevich et al [73] compared the AUDIT
completed via their app with pen and paper administration of
the measure. Wray et al [69] asked participants to complete the
AUDIT once a day for 30 days and compared this with the
TLFB. Both studies provided some evidence for the validity of
completing the AUDIT via a smartphone app. Kizakevich et al
[73] demonstrated that there was very good convergence
between the AUDIT completed on paper and via the app (0.97),
whereas Wray et al [69] found that the AUDIT and web-based
TLFB were moderately correlated (0.55-0.88). Wray et al [69]
found evidence of underreporting alcohol use on the TLFB.

BrAC Apps

Luczak et al [66] investigated the ability of a transdermal alcohol
concentration (TAC) device in combination with a commercially
available app Intellidrink to estimate BrAC. TAC devices
measure the amount of alcohol diffusing through the skin at a
particular time. As the raw TAC data are not directly related to
blood alcohol concentration (BAC) or BrAC, further information
on consumed alcoholic drinks is required to calibrate the models
that convert TAC data to BrAC. The Intellidrink app was used
to allow participants to self-report basic demographic data and
data for each drinking episode. These data were combined with
the TAC data in the authors’ BrAC estimator software to
accurately estimate BrAC. The authors found that the BrAC
algorithm combined with the Intellidrink app had good
convergent validity when compared with results generated by
the previously validated breath alcohol estimator software
developed by the authors. The combination of TAC device and
Intellidrink app calculated peak BrAC estimates (eBrAC) to
within 0.0003% of that calculated by the BrAC estimator
software when using raw breadth analyzer data. The Intellidrink
calculated time of peak eBrAC was within 18 minutes of the
reference data, and the area under the eBrAC curve was within
0.025% for alcohol hours.

Active Objective
Two studies [76,77] investigated approaches to actively and
objectively measure alcohol use via smartphones. One [77]
examined the potential of a mobile-based test of psychomotor
performance to measure alcohol-induced impairment, whereas
the other [76] described the validation of an optical attachment
for smartphones to identify the results of saliva alcohol
concentration test strips.

In their study, Matsumura et al [77] tested the performance of
participants on a mobile-based test of psychomotor performance
(Spiral for iPhone) and 3 computer-based tests assessing
psychomotor and cognitive performance at predrink baseline
(BAC of 0%) and after alcohol consumption. When participants
had a BAC close to 0.1%, their performance on all tests,
including the Spiral for iPhone, was found to be significantly
worse than baseline and 0% BACs. Although significant
decreases in performance accuracy for the 3 computer-based
tests were also found when participants had BACs close to
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0.06%, performance on the smartphone-based test (Spiral for
iPhone) was not significantly worse than baseline.

Kim et al [76] examined a custom-built smartphone attachment
and smartphone app to capture an image of saliva alcohol
concentration test strips and identify their correct saliva alcohol
concentration. Using their system, they inserted test strips into
the custom-built smartphone attachment, and images were
captured using the camera of the smartphone. Their smartphone
app used machine learning techniques to calculate the estimated
saliva alcohol concentration. The authors used test strips
prepared with various concentrations of ethyl alcohol to generate
the training data. A total of 14 images were recorded for each
concentration, but the study by Kim et al [76] did not report
how many of these were used for training, and how many were
used for unbiased testing of the trained machine learning
algorithms. The authors reported that this approach to analyzing
saliva alcohol concentrations is valid and reliable across
different types of smartphones, providing average classification
rates of 100% accuracy for standard concentrations (0%, 0.02%,
0.04%, 0.08%, and 0.3%) and 80% accuracy for intermediate
concentrations that required finer discrimination.

Passive Objective

Overview

A total of 4 studies examined the measurement properties of
passive objective approaches to measure alcohol use. Arnold
et al [3] and McAfee et al [78] used smartphone sensors [3] and
a combination of smartphone and smartwatch sensors [78] to
measure gait as a proxy for alcohol-induced impairment,
whereas Santani et al [79] and Bae et al [67] used phone sensor
data to infer alcohol use (see Multimedia Appendix 2 for full
study details).

AlcoGait App

A total of 2 studies [3,78] investigated whether a smartphone
user’s level of alcohol intoxication could be accurately inferred
from their gait. Both studies used the AlcoGait app, which runs
continuously in the background of smartphones of users. In the
study by Arnold et al [3], accelerometer data were collected by
the app, and information about users’ gait generated. This
information was then labeled the following day using an in-app
survey that asked users to identify when they began drinking
and finished drinking and how many drinks they had. Machine
learning algorithms were trained with these data to infer BAC
as membership of one of the three classes: 0 to 2 drinks, 3 to 6
drinks, or >6 drinks. In their study, McAfee et al [78] extended
the AlcoGait app with the AlcoWatch to create the AlcoWear
system, which also uses gyroscopes to capture information on
the rotational velocity of the smartphone in response to the
user’s movement.

Both studies generated evidence for the validity of this approach.
Arnold et al [3] found that after training the system on 209 data
points, the AlcoGait app could classify the alcohol consumption
of a user into 1 of the 3 classes with an accuracy of 56% (F
score of 0.629 and area under the receiver operating
characteristic curve [AROC] of 0.685) on training data. They
reported a higher performance of 70% (F score of 0.786 and
AROC of 0.825) on yet unseen data. McAfee et al [78] used 33

participants wearing sensor-impairment goggles to simulate the
effects of alcohol consumption on the body. Training data were
gathered by extracting features such as step count, cadence, and
sway from 90-second walks with sensor-impairment goggles
simulating BAC in 4 ranges (0.04-0.06, 0.08-0.15, 0.15-0.25,
and 0.25-0.35). These training data were then used to train and
validate several machine learning algorithms. They found that
the AlcoGait app was able to infer the correct BAC range with
an accuracy of 89.45% with 99% of the data used for training
and 1% used for validation. The authors reported a maximum
accuracy of 79.8% when using the smart watch to infer BAC
as being higher or lower than 0.08.

Smartphone Sensors

Overall, 2 studies [67,79] examined the use of data from
multiple smartphone sensors and machine learning to
automatically recognize drinking behavior. They both used apps
that run in the background on user’s phones to collect sensor
data from participants’ phones. Bae et al [67] used the app
AWARE to collect data continuously over 28 days from 38
young adults with hazardous drinking. They collected
information relating to time (eg, day of week or time of day),
movement (eg, accelerometer or gyroscope), communication
(phone calls or texts), and psychomotor impairment (keystroke
speed; available for Android phones only) and used these data
to train random forests to predict periods of no drinking, low-risk
drinking, and high-risk drinking from historic data (1- and 3-day
history). Alcohol use information was collected via SMS text
messages sent at 10 AM each day asking about the previous
day. The performance of their algorithms was tested using 20%
of the data not previously used for training.

Santani et al [79] used the Android app SensorLogger to collect
information related to location (GPS or Wi-Fi), movement
(accelerometer), social context (density of nearby Bluetooth
devices), and phone use (battery, screen, and app use) on 10
weekend nights from 8 PM to 4 AM from 241 participants. The
DrinkLogger app was then used to allow participants to report
their alcohol consumption when it occurred. After preprocessing,
1011 user nights from 160 individuals were used to train a
random forest algorithm with 500 trees to predict whether a
user had consumed alcohol on a given night.

Bae et al [67] provided some evidence of the validity of using
mobile phone sensors and machine learning algorithms to
identify alcohol use among young people. They found that
drinking categories were significantly correlated with time of
day (0.11) and day of week (0.06), claiming that with time of
day and day of week alone, they were able to detect low- and
high-risk drinking with 90% accuracy. Their best-performing
model to predict drinking used random forests and 3 days of
historical data from multiple sensors. The model had a Cohen
κ of 0.80 and an AROC of 0.96 and correctly classified
30-minute windows of time as nondrinking 98.5% of the time,
low-risk drinking 70.2% of the time, and high-risk drinking
84.4% of the time. The AROC is a measure of the ability of an
algorithm to achieve high sensitivity as well as high specificity
and has a maximum value of 1, indicating a perfect classifier.
Random predictions (of drinking in this case) would result in
an AROC score of 0.5. In contrast, Santani et al [79] found that
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even data from their most informative features (accelerometer
data) could only identify drinking nights with 75.8% accuracy.
This was followed by location, Wi-Fi, and Bluetooth logs with
68.5%, 65.2%, and 64.2% accuracy, respectively (note that a
random guess would have resulted in an accuracy of 67%, as
67% of the data used reported alcohol consumption for that
night).

Tobacco

Overview
A total of 8 studies [68,80-85,92] described the measurement
properties of approaches assessing tobacco use. The number of
participants involved in these studies ranged from 3 to 146

(N=363). The studies involved, on average, 34.7% female
participants ranging in age from 18 to 64 years. The key
characteristics of the 8 studies are shown in Table 4 (see
Multimedia Appendix 2 for full study details). Furthermore,
50% (4/8) of the studies described active objective approaches
to measure smoking, 12% (1/8) used a self-report method, and
37% (3/8) described passive objective approaches. All 8 studies
assessed the construct validity (specifically convergent validity)
of their approaches. Although several different apps are
described in the included studies, only 4 apps are accessible via
the leading app stores (Instant Heart Rate, Cardio [83],
Smokerlyzer [82], and SmokeBeat [84]), and designed to help
consumers monitor their own tobacco use.

Table 4. Key characteristics of studies examining the measurement of tobacco via a smartphone.

Measurement properties assessedMeasure-
ment ap-
proach

Publicly
available

App nameCountryStudy

Risk of
bias

Respon-
siveness

Criterion
validity

Construct
validity

Measurement
error

Reliability

Doubtful——✓——aPassive
objective

YesSmokeBeatIsraelDar [84]

Doubtful✓—✓——Active
objective

YesInstant Heart Rate
or Cardio

United
Kingdom

Herbec et
al [83]

Doubtful——✓——Active
objective

NoMy Mobile MonitorUnited
States

McClure
et al [80]

Doubtful✓✓✓—✓Passive
objective

NRNRbUnited
States

Meredith
et al [81]

Doubtful——✓——Passive
objective

NRNRCanadaQin et al
[92]

Very good——✓——Passive
objective

NoNRNether-
lands

Shoaib et
al [85]

Doubtful——✓✓—Self-re-
port

YesOhmageUnited
States

Swende-
man et al
[68]

Doubtful—✓✓—✓Active
objective

YesSmokerlyzer and
iCOSmokerlyzer

MalaysiaWong et
al [82]

aNo reporting of measurement property assessed.
bNR: not reported.

Self-report
One study [68] examined the measurement properties of a
self-report method to assess tobacco use. In this study,
HIV-positive adults were asked to complete daily mobile
surveys when prompted by the app, and whenever they smoked,
for 6 weeks. Participants were asked to indicate if they had
smoked since the last time they self-reported via the app. This
study demonstrated that there was very good convergent validity
among daily mobile self-reports and web-based 14-day recall
surveys of tobacco use, with a strong correlation between
methods (0.92).

Active Objective

Overview

Of the 4 studies that examined active objective measures of
tobacco use, 3 (75%) [80-82] investigated the measurement of
expired CO using a smartphone app in conjunction with expired
CO monitors, and 1 (25%) [83] investigated whether heart rate
measured by a smartphone could accurately identify smoking
episodes.

Expired CO

A total of 3 studies used this methodology [80-82], and all found
evidence to support its validity and reliability. Overall, 67%
(2/3) of these studies [81,82] used expired CO monitors designed
to attach directly to smartphone users. Meredith et al [81]
described the use of a prototype CO monitor for smartphones,
developed by the authors, and Wong et al [82] examined the
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first commercially available CO monitor for use with a
smartphone and accompanying smartphone app (iCO
Smokerlyzer and the Smokerlyzer app). Both studies found that
the first and second CO measures collected via their smartphone
CO monitors were strongly and significantly correlated with
each other (0.98 and 0.94, respectively). Both studies also found
that measurements of expired CO collected via
smartphone-attached CO monitors were strongly correlated with
measurements collected via stand-alone CO monitors. A third
study [80] described a protocol whereby young smokers (aged
15-25 years) used a smartphone app (MyMobile Monitor) and
the camera of their smartphone to take time-stamped
photographs of themselves exhaling into a stand-alone expired
CO monitor (PiCo Smokerlyzer), and a photograph of the CO
readings displayed by the monitor to be verified by the research
staff. This study found a moderate agreement among the
methods (0.49).

Heart Rate Apps

One study [83] used 2 publicly available heart rate apps (Instant
Heart Rate and Cardio) to investigate whether resting heart rate
measured using a smartphone could be used to verify smoking
abstinence. The study by Herbec et al [83] of 18 adult daily
smokers found some evidence to support this approach.
Specifically, they found that lower heart rates were observed
among all participants on days they did not smoke and did not
use nicotine replacement products, compared with days on
which they smoked as usual. Similarly, lower heart rates were
also observed among 83% (15/18) of participants on days they
were abstinent but used a nicotine replacement product
compared with those on days when they smoked as usual.

Passive Objective

Overview

A total of 3 studies [84,85,92] investigated passive objective
approaches to measure tobacco use via smartphones. Overall,
67% (2/3) of these studies [84,85] used wrist-worn sensor
devices (eg, smartwatches) in conjunction with smartphone
apps to detect episodes of smoking. A third [92] used in-phone
sensors only to recognize the occurrence of smoking might be
taking place.

Wrist-Worn Sensors

Shoaib et al [85] used accelerometer and gyroscope data
collected from smartwatches and smartphones to test a 2-layer
hierarchical smoking detection algorithm. In their study,
participants wore a smartwatch on their right wrist and a
smartphone in their right pocket. A total of 11 participants
performed 17 hours (230 cigarettes) of smoking while sitting,
standing, walking, and in group conversation and 28 hours of
other similar activities (eg, eating and drinking). Data were
collected at 50 samples per second from these sensors. Dar [84]
provided participants with smartwatches and instructed them
to wear them on the hand that they used for smoking. Dar [84]
then used the SmokeBeat app to process raw data from these
devices, identify smoking episodes, and provide feedback to
participants in real time. These 2 studies demonstrated very
good convergent validity with self-reported smoking episodes.
Shoaib et al [85] achieved a very high precision and recall for

smoking in 83% to 97% F-measure, whereas Dar [84] detected
82.29% of smoking episodes, with a negligible frequency of
erroneously detected episodes (2.85%).

In-Phone Sensors

One study [92] used data collected from the GPS, Wi-Fi, and
accelerometer within the smartphones of participants and
self-reported smoking behaviors, collected over 1 month to train
and evaluate algorithms to accurately classify smoking and
nonsmoking periods based on in-phone sensor data alone. First,
each of the individual features extracted from the sensor data
collected was used to train univariate hidden Markov models
(HMMs), which were then evaluated. Next, multivariate HMMs
using 3 features and 5 features were trained and evaluated. Qin
et al [92] were able to detect smoking activity with an accuracy
over 0.9, and an AROC of >0.8. HMMs with a single feature
were found less accurate than multivariate HMMs.

Risk of Bias
Most studies (35/48, 73%) investigating the measurement of
diet received very good (23/48, 48%) or adequate (12/48, 25%)
methodological quality ratings on the COSMIN Risk of Bias
tool (Table 2). As Table 3 shows, most studies (11/16, 69%)
investigating the measurement of alcohol use were of at least
adequate methodological quality (very good, 8/16, 50%; and
adequate, 3/16, 19%), whereas only 13% (1/8) of the studies
investigating the measurement of tobacco use received a very
good rating (Table 4).

Across the 3 behaviors, 73% (29/40) of studies investigating
self-report measurement approaches received very good or
adequate quality ratings. This is compared with 60% (15/25)
of studies investigating active objective approaches and 38%
(3/8) of studies investigating passive objective approaches.
Ratings of adequate or very good were achieved by 72% (21/40)
of diet self-report studies, 74% (14/19) diet active objective
studies, and 63% (5/8) alcohol self-report studies. By contrast,
adequate or very good ratings were achieved by only 50% (1/2)
of alcohol active objective and 50% (2/4) alcohol passive
objective studies, by 25% (1/4) of tobacco passive objective
studies, and by none of the tobacco self-report and active
objective studies.

The 3 most commonly investigated measurement properties
were also found to be the most rigorously examined. Overall,
71% (22/31) of studies examining measurement error, 96%
(26/27) of studies examining criterion validity, and 76% (35/46)
of studies examining construct validity received very good or
adequate ratings for their examination of these measurement
properties. In contrast, reliability and responsiveness were only
examined with very good or adequate methodological quality
in 29% (2/7) and 40% (2/5) of the studies, respectively.

Discussion

Principal Findings

Overview
This systematic review is the first to bring together the existing
evidence of the measurement properties of smartphone-based
approaches to measure three key lifestyle behaviors—diet,
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alcohol use, and tobacco use. Overall, there was some evidence
to support the reliability and validity of using smartphones to
assess these behaviors. However, results varied by behavior and
measurement approach, and the methodological quality of
studies ranged from inadequate to very good. To an extent this
large range can be attributed to the significant number of new
technologies and methodologies being designed and tested for
automated measurements of the behaviors of interest. These
methods are not yet mature enough but may provide exciting
opportunities as they develop further.

Studies most commonly focused on approaches to assess dietary
behaviors (48/72, 67%), with only 22% (16/72) and 11% (8/72)
measuring alcohol and tobacco use, respectively. Across the
health behaviors, 19 different smartphone-based measurement
techniques were used, the most commonly examined approach
being food diary apps. Most studies investigated the construct
validity, criterion validity, or measurement error associated with
their measurement technique, whereas few examined their
reliability or responsiveness. Although a wide range of
smartphone apps were described in the included studies, most
of these apps are not currently publicly available or are designed
as research data collection tools, rather than tools that can be
easily used by clinicians or consumers to monitor diet, alcohol
use, or tobacco use behaviors.

The highest quality evidence was found for diet, with most
studies examining diet being rated as very good or adequate
(35/48, 73%). This was compared with those assessing alcohol
use (11/16, 69%) and tobacco use (1/8, 13%). In light of the
fewer number of studies and poorer quality of evidence
available, conclusions and recommendations drawn from the
existing literature regarding smartphone-based measurement of
alcohol and tobacco use should be interpreted with caution.

Diet
Diet was most commonly examined using self-report methods.
These studies indicated that food diary apps, in particular
MyFitnessPal, can be a reliable and valid method of measuring
energy intake. Individual studies investigating other
smartphone-based self-report methods, including 24-hour recall,
web-based food databases, EMA, and food diary apps using
unstructured data entry methods, have demonstrated promising
results. However, there is currently insufficient evidence
supporting the reliability or validity of these approaches, and
further research is required. A growing body of literature
suggests that manually analyzed food photography may be valid
and reliable in a general adult population. However, because of
the need for highly trained individuals to analyze every captured
image, this approach is unlikely to be scalable or sustainable
outside of a research context.

This review identified a small body of literature investigating
the novel approach of using smartphones to capture images and
voice, extract food intake information from these data, and
access external databases to retrieve nutrient information. These
studies relied on spoken reports by users or on the use of
machine learning to automatically recognize food items (and
their size) in photographs. Although the results are encouraging,
most of these studies confined their investigations to a small
number of food items, with tests performed on a small number

of participants. Hence, the generalizability of these results
cannot be assessed. Given the large variation in the appearance
of food in a global society, such approaches will likely require
vast amounts of varied training data to be of general
applicability. Promisingly, the lower burden this automatic
analysis approach places on users and administrators and its
potential to provide real-time feedback to users mean that this
approach is potentially scalable and could be a powerful addition
to eating behavior interventions. Both manually and
automatically analyzed food photography methods address some
of the key issues associated with traditional methods for
measuring diet behavior. As long as users remember to take a
photograph of their food, these methods provide an objective
record of their food intake reduction issues associated with recall
bias, and the use of fiducial markers (as was common in
included studies) reduces the reliance on users to be able to
accurately estimate portion sizes.

An important limitation of most of the studies that investigated
the measurement of diet behaviors was small sample sizes, with
77% (37/48) of the studies involving under 100 participants,
including 50% (24/48) of the studies with <50 participants.

Alcohol
As with diet, most studies assessing alcohol use used self-report
methods. A strength of this literature is the frequent (though
not universal) use of a common comparison measure, the TLFB
[91]. The included studies provided good evidence for the
validity of daily and real-time self-reporting of alcohol use via
smartphones, with moderate to strong correlations with
retrospective reports of alcohol use found across studies.
However, several of these studies [68,71,72,89] also found that
participants reported greater alcohol use via smartphone-based
reporting compared with retrospective reports of alcohol use,
such as the TLFB. These discrepancies were interpreted by a
number of authors [71,72,89] as evidence that underreporting
of alcohol use occurs when using recall methods and that
app-based self-reports of alcohol use may be able to provide a
better understanding of alcohol intake [89]. This interpretation
is problematic, as the TLFB is widely acknowledged as the gold
standard measure for self-reported alcohol use. Unfortunately,
none of the included studies also used an objective measure of
alcohol use, which may have elucidated this finding and would
have allowed a comparison of the accuracy between app-based
self-report and the TLFB.

Insufficient evidence for the smartphone administration of
AUDIT [93], a standardized measure of alcohol use disorder,
has been generated to date. Similarly, although the results of a
study examining if BrACs could be accurately estimated via a
smartphone app were positive, there is insufficient evidence at
this stage supporting this approach. Two studies assessed novel
active objective methods for measuring alcohol use. For
example, the study by Matsumura et al [77] suggests that
smartphone-based measures of psychomotor performance may
be able to validate alcohol-induced impairment. However, more
studies involving larger sample sizes are required before it can
be determined if initial promising results are representative of
the true measurement properties of these approaches.
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Although only 4 studies focused on passive objective
measurement of alcohol use, these findings suggest that using
in-built phone sensors to infer and even predict alcohol use may
be a promising assessment method. However, some
methodological issues are worth noting. For example, McAfee
[78] likely severely overfit their data by training their algorithm
on 99% of their data, meaning that their approach is unlikely
to be able to generalize to a new data set. Further research is
needed before the validity and reliability of these types of
methods can be established and will likely include the gathering
of large amounts of data. To be of most use to clinicians,
consumers, and researchers who are interested in passively
measuring alcohol use, easy-to-use interfaces that automatically
process sensor data (preferably in real time) and feedback results
are needed.

A limitation of most studies that investigated measurement of
alcohol use was the small sample size, with 81% (13/16) of the
studies involving samples of <100 participants (11/16, 69%,
with <50 participants). In addition, many included studies were
conducted within specific populations, such as college students,
people with HIV, and military personnel, which may limit the
generalizability of results to the broader population.

Tobacco
Measuring tobacco use with smartphones has been examined
by the fewest number of studies. Unlike other behaviors, most
tobacco use studies have focused on objective measurement
techniques rather than self-reports. A total of 3 studies supported
the methodological soundness of measuring expired CO using
smartphones (and expired CO monitors). Using apps that
measure users’ heart rate was also found to be a promising way
to quickly and easily verify smoking abstinence. Passive
measurement approaches using wrist-worn and in-phone sensors
also show promise.

Although the results from these individual studies are promising,
further research is needed to establish the validity and reliability
of these types of objective approaches. In addition, most studies
involved very small samples (7/8, 88%, involved <100
participants; and 6/8, 75%, involved <50 participants).

Strengths and Weaknesses of Measurement
Approaches
This study identified three key approaches used to measure diet,
alcohol use, and tobacco use via smartphones: self-report, active
objective, and passive objective approaches. Across behaviors,
several key strengths and weaknesses associated with these
approaches have emerged. To date, most evidence has been
generated for self-report and smartphone-based measurement
approaches. These approaches are most similar to traditionally
used measurement approaches and often involve simply asking
users to complete existing validated measures of behaviors by
interacting with the touchscreen of their smartphone, rather than
completing them using a pen and paper survey or an interview.
Moving self-report measures onto a smartphone, a device that
many people carry with them and that can automatically
calculate summary information, improves upon traditional
measurement approaches by facilitating real-time recording of
health behaviors and providing feedback to users—a potentially

powerful intervention tool [94]. Although many self-report
methods have been shown to be reliable and valid, particularly
for diet, these approaches remain burdensome and require
considerable input from the user. It is also likely that
smartphone-based self-report measures continue to suffer from
biases similar to traditional self-report systems, for example,
as response bias and declining accuracy over time.

This review identified several novel approaches to objectively
measure diet, alcohol use, and tobacco use, both with and
without the active involvement of participants. Fewer studies
that used objective approaches (active and passive) received a
quality rating of very good, compared with self-report
approaches. This perhaps is not so much a criticism of these
approaches as an acknowledgment that many of these studies
used innovative machine learning methods with limited data
sets and require further investigation before they can be
considered mature. The obvious strength of these approaches
is that they have the potential to provide objective measurements
of consumption behaviors, which have traditionally been
primarily assessed using self-report measures. These approaches
can address issues with reporting accuracy, recall bias, and
memory. However, for alcohol and tobacco use, the objective,
smartphone-based measurement approaches developed to date
do not directly assess these behaviors (as is the case for diet
with food photography methods). Rather, these approaches use
proxy measures related to the physiological response to the
behaviors (eg, measuring CO content or BAC, or measuring
gait to infer alcohol intoxication) or infer the physical
movements associated with the behaviors (eg, hand movements
to infer cigarette smoking). For all 3 behaviors, the results of
active objective measurements suggested that, although these
methods have good potential to significantly reduce the user
burden and recall bias, they can still be quite burdensome for
users and may not be particularly scalable, as for manually
analyzed food photography methods.

Although passive objective approaches may address the issue
of participant burden by collecting information from
smartphones without the involvement of users, this continuous
collection and storage of sensor data from phones is associated
with privacy and data security issues, which may mean that
these powerful approaches are not acceptable to many people.
However, previous research indicates that when employed for
health purposes (eg, sharing sleep, mood, or physical activity
information with a physician), most people are comfortable
sharing passively sensed information, and characteristics such
as age may not influence the comfort of individuals by sharing
this sort of information [95]. With only 7 studies that described
the measurement properties of passive objective approaches,
more research is needed to establish the validity and reliability
of these approaches. Although sufficient evidence may not yet
exist to recommend the use of passive objective measurement
approaches, these types of approaches have huge potential to
augment health behavior change interventions. Information
gathered in this way can potentially be used to provide tailored
support in the moment to users, allowing relevant support to be
delivered during a time and context when it is most salient [67].
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Recommendations and Future Directions
Although 72 studies were identified that aimed to describe novel
smartphone-based approaches to measuring diet, alcohol use,
and tobacco use, a major issue identified within this literature
is the extreme heterogeneity in approaches and evaluation
methods investigated. Nineteen broad measurement techniques
were described in studies included in the current review, and
within these groups, almost every individual study described a
different specific technique. For example, each food diary app
described used a different way to record diet information, used
different food databases to provide nutritional information of
recorded food items and different methods for entering data.
Similarly, the algorithms used to automatically analyze food
images or indicate that alcohol and tobacco use from sensor
data differed. The relatively short time smartphones have been
available (approximately 13 years) and the relatively early stage
of research in this area may explain the lack of homogeneity in
the types of specific techniques and methods investigated.

Noting the above limitations of current knowledge in this area,
clinicians and consumers looking for valid, reliable, and publicly
available ways to assess diet and alcohol use behaviors might
consider using food diary apps such as MyFitnessPal
[18,22,32,34,40] and apps that assess alcohol use via daily or
real-time self-reports (eg, Intellidrink) [66].
Smartphone-compatible CO monitors such as the
iCoSmokerlyzer and Smkerlyzer apps are also promising ways
to assess tobacco use [82]; however, further research in this area
in particular is needed.

Although it is important to continue moving the field forward
and investigate if new and better ways to measure consumption
behaviors using smartphones can be developed, it is strongly
recommended that researchers first look to the existing literature
described here (and in other fields) to determine if, in the search
for a way to measure diet, alcohol use, or tobacco use, using a
smartphone, an existing technique, or an app may be appropriate
for their purposes before considering development of yet another
app. Agreed-upon standards for capturing the data and extracting
higher-level information (such as nutrient information) would
be a constructive way of ensuring that the data collected can be
pooled with similar data from other initiatives, thus providing
a larger and more robust data set for algorithm development.

Only 4 studies [42,43,64,65] described apps that assessed >1
behavior (specifically diet and physical activity behaviors).
Building or identifying systems that allow easy and accurate
measurement of multiple health behaviors would be a useful
addition to the field as we know that health risk behaviors such
as poor diet, substance use, physical inactivity, and poor sleep
[96].

The heterogeneity of methods used to evaluate the measurement
properties of techniques is another weakness of the current
literature. Again, it is recommended that researchers examine
the existing literature closely when designing their own studies.
For example, it is suggested that the TLFB be considered as a
comparison measure for smartphone-based approaches to
measure alcohol use, as it has been most frequently used in the
current literature. However, no such common comparison
measure of diet and tobacco use has emerged from the literature

to date. In addition, the accuracy of self-reported measures of
these consumption behaviors has been questioned [68,71,72,89],
and it has been suggested that newer measurement approaches,
such as the smartphone-based approaches discussed here, may
in fact provide data closer to the actual behaviors under
investigation and may eventually be themselves considered the
gold standard in the measurement of these behaviors. In the
meantime, it is recommended that researchers consider
investigating the validity of smartphone-based approaches in
comparison with objective measurements of these behaviors.
Indeed, this review identifies a lack of objective comparisons
as a key weakness, with few studies (particularly for alcohol
and tobacco use) investigating the criterion validity of these
approaches. Similarly, other measurement properties, such as
reliability and responsiveness, have rarely been investigated.
To take full advantage of smartphones in research, in clinical
settings, and within consumers’ everyday lives, the full variety
of measurement properties of these different approaches needs
to be better understood.

To have the biggest impact on chronic disease, we need to make
valid and reliable tools easily available to clinicians and
consumers to allow for the collection of quality and detailed
health behavior information. There is also a need for easy-to-use
interfaces to facilitate the use of these passive sensing systems
by clinicians and consumers. Quality and detailed information
regarding diet, alcohol use, and tobacco use can be leveraged
to help individual consumers acquire better insights into their
own behaviors and inform tailored support. In other words, it
is important that the apps used to measure diet, alcohol use, and
tobacco use are publicly and freely available.

Limitations
An important limitation of this review is that it included only
studies published up to March 2020. In this rapidly growing
area, there are likely to be recent and ongoing studies that have
also investigated the measurement properties of
smartphone-based approaches to measuring health behaviors.
In addition, this review only captures approaches whose
measurement properties have been examined and discussed in
the published literature. It is likely that other novel and
potentially effective approaches to measure diet, alcohol use,
and tobacco use have been developed and are currently in use
but that they have been developed outside of academia, their
measurement properties have not been not specifically assessed,
or they simply have not been published.

Conclusions
Accurate measurement of diet, alcohol use, and tobacco use is
central to successful chronic disease risk reduction interventions
[8-11]. Therefore, identifying new and valid ways to measure
these behaviors could have major public health implications.
This review highlights measurement approaches that clinicians
and researchers may want to consider implementing to help
clients better measure and manage their health behaviors and
improve the measurement of these behaviors in research settings.
The results suggest that food diary apps, particularly the
commercially available app MyFitnessPal, may be appropriate
tools to measure diet. The review also highlights approaches
with growing bodies of promising evidence but where more
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research is needed before their use might be recommended (eg,
food photography methods and CO monitor smartphone
attachments). Finally, the review highlights several measurement
approaches with great potential but where only mixed evidence
or evidence from 1 or 2 studies is available (eg,
smartphone-based measurement of psychomotor performance
to infer alcohol intoxication; the use of smartphone and
wrist-worn sensors to infer alcohol intoxication and detect or

predict alcohol and tobacco use; and the use of heart rate monitor
apps to infer smoking abstinence). These conclusions should
not be interpreted as a criticism of these approaches but rather
as an acknowledgment that many of these approaches use
cutting-edge technologies, which require further research (and
data) before they can be expected to yield accurate and
generalizable results.
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